To Bag is to Prune

Philippe Goulet Coulombe gouletc@sas.upenn.edu

Université du Québec à Montréal

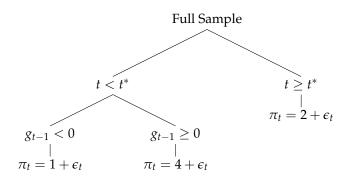
Montréal, June 10, 2021

Random Forest (RF) Crash Course

What is a tree?

RF is a diversified ensemble of regression trees. What is a tree?

- Let π_t be inflation at time t.
- t^* is inflation targeting implementation date.
- Let g_t be some measure of output gap.



RF Crash Course

Estimating a tree

$$y_i = \mathcal{T}(X_i) + \epsilon_i$$

• A regression tree is an algorithm that recursively partitions the data until some stopping criterion is met. A *greedy* algorithm is used:

$$\min_{k \in \mathcal{K}, c \in \mathbb{R}} \left[\min_{\mu_1} \sum_{\{i \in L \mid X_i^k \le c\}} (y_i - \mu_1)^2 + \min_{\mu_2} \sum_{\{i \in L \mid X_i^k > c\}} (y_i - \mu_2)^2 \right]$$
(1)

- The prediction for *j* is the average of *y*_{*i*} for all *i* that are members of the same "leaf" as *j*.
- A single tree typically has low bias and very high variance.
- There exists ways to decrease tree's variance by "pruning", which means stopping the greedy algorithm "early".

RF Crash Course

3 ingredients to go from a single tree to a forest

For each tree:

1. Let the trees run deep: even though that would surely imply overfitting for a single tree, let each tree run until leafs contain very few observations (usually < 5).

Diversifying the Portfolio (i.e., creating the ensemble)

- 2. **Bagging**: Create B nonparametric bootstrap samples of the data. That is, we are picking $[y_i \ X_i]$ pairs with replacement.
- 3. **Perturbation**: At each splitting point, we only consider a subset of all predictors ($\mathcal{J}^- \subset \mathcal{J}$) for the split.

RF prediction is the simple average of all the *B* tree predictions.

RF Crash Course

Why do we like it

- It works tremendously well on all sorts of data, even macro data (Chen et al., 2019; Goulet Coulombe et al., 2019; Medeiros et al., 2019; Goulet Coulombe, 2020; Goulet Coulombe et al., 2020).
- More often than not, it's better than Neural Networks which require careful tuning.
- Can approximate a wide range of nonlinearities
- Tuning parameters do not alter prediction much
- Can easily deal with a very large *X* (no matrix operation involved)
- Most importantly, it does not seem to overfit. How can that be?

The R_{test}^2 vs R_{train}^2 Puzzle

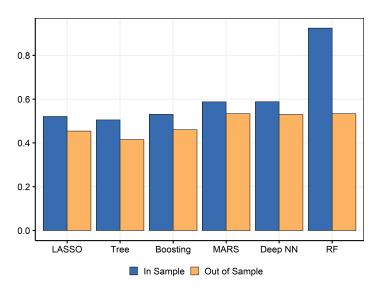


Figure: Abalone data set example

Usual explanations for RF's success don't explain it

- (Breiman, 2001) originally derived an upper bound on the generalization error of RF it decreases as \mathcal{T} strength increases, and increases as correlation between them increases.
 - ⇒ Nice to have, but it does not say much about results obtained in practice.
- (Bühlmann et al., 2002): bagging brings smoothness (hence regularization)
 - \Rightarrow If that was just that, then $R_{test}^2 \approx R_{train}^2$ like for any usual smoothing method
- (Mentch and Zhou, 2019) (and ESL): randomization implies a ridge-like regularization obtained by model averaging – an adequate argument for global linear models (reminiscent of (Elliott et al., 2013)'s CSR)
 - \Rightarrow If that was just that, then $R_{\text{test}}^2 \approx R_{\text{train}}^2$ like for Ridge
- (Belkin et al., 2019) claims RF has a "double-descent" risk curve, like Neural Nets.
 - ⇒ Their construction confused additional trees with additional complexity, which is true for Boosted Trees, but not RF. In fact, RF has a single, never-ascending, descent.

Roadmap

- Why the puzzle occurs and what it tells us about RF's legendary robustness to overfitting
 - 1. What happens in the overfitting zone stays in the overfitting zone
 - 2. Bagging + Perturbation (B & P) as an approximation to population sampling (and a *Perfectly* Random Forest)
- Those ideas should apply to any randomized greedy algorithm → leverage those to develop two new "self-tuning" algorithms
 - 1. Booging
 - 2. MARSquake

-- If time allows –

- Why RF implicit pruning is better than pruning CART directly
 - 1. Insights from nonlinear time series models: it prunes the true latent \mathcal{T} .
 - 2. Extra: Slow-Growing Trees

Greed is Good

The Key: A greedy algorithm treats what has already happened as given and what comes next as if it will never happen.

- **Old song**: greedy optimization is an inevitable (but suboptimal) practical approach in the face of computational adversity (see ESL) bad because no guarantee to get the "optimal" tree.
- **New song**: by building recursively a model of increasing complexity (when true complexity s^* is unknown) in a stepwise fashion, what is estimated in early steps is immune to the "pollution" brought by the latter steps (which are likely overfitting).

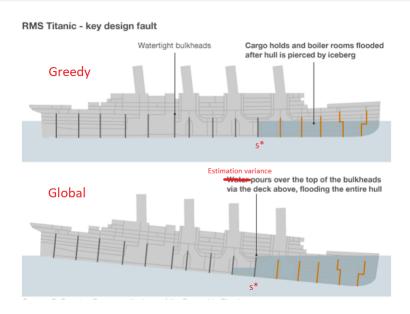
What happens past s^* stays past s^*

$$\hat{y}_i = \underbrace{\beta_1 x_{1,i}}_{s=1} + \underbrace{\beta_2 x_{2,i}}_{s=2} + \underbrace{\beta_3 x_{3,i}}_{S=3}$$

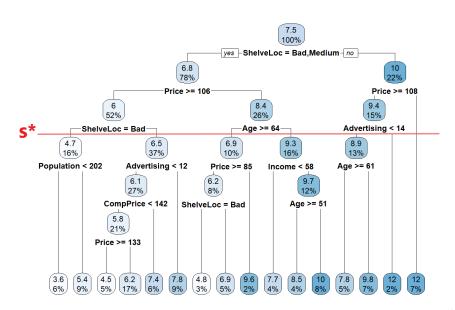
$$\underbrace{\beta_1 x_{1,i}}_{OLS} + \underbrace{\beta_2 x_{2,i}}_{S=3} + \underbrace{\beta_3 x_{3,i}}_{OLS}$$

- Global optimization (think OLS): overfitting weakens the whole prediction function
 - ⇒ estimating many useless coefficients inflates the generalization error by increasing the variance of *both* the useful coefficients and the useless ones.
- **Greedy** optimization (think tree, or boosting): the function estimated before *s* is *treated as given*.
 - \Rightarrow the algorithm eventually reach s^* where the only thing left to fit is the unshrinkable "true" error $\epsilon_i = y_i \hat{f}_{s^*}(x_i)$, i.e., overfitting.
 - \Rightarrow But this does not alter \hat{f}_{s-1} since it is not re-evaluated. Only useless stuff is added on "top" of it.
 - \Rightarrow More concretely, $\hat{\beta}$'s estimated or tree splits estimated before s^* cannot be revoked, and the predictive structure attached to them cannot weaken by ulterior steps.

RMS Titanic, Compartments, and ML Algorithms



A Less Maritime Example



What is happening beyond s^* ?

• At *s**, the unknown point of optimal early stopping (aka the *true* terminal node in the case of a tree), the DGP is

$$y_i = \mu + \epsilon_i. \tag{2}$$

and the best prediction is clearly the sample average. And yet, the algorithm continues to fit beyond s^* .

- Two questions:
 - 1. What is the prediction of a "perfectly random forest"? That is, one where we replaced B & P by population sampling fitting fully overfitted greedy trees on non-overlapping samples of the same DGP?
 - 2. Can B & P provide a good approximation to the ideal PRF when applied to trees? (This is an empirical matter.)

The Perks of a Perfectly Random Forest

- We are looking at the prediction for a new data point j using f trained on observations $i \neq j$.
- Assume fully grown trees terminal nodes include one observation.
- Since the tree is fitting noise, each out-of-sample tree prediction is a randomly chosen *y*_i for each *b*.
- Define r = B/N where N is the number of training observations and r will eventually stand for "replicas".
- Since the $y_{i(b)}$'s amount to random draws of $y_{1:N}$, for a large enough B, we know with certainty that the vector to be averaged will contain r times the same observation y_i .
- Remembering that r = B/N, the prediction is

$$\hat{\mu}_{j}^{\mathrm{RF}} = \frac{1}{B} \sum_{b=1}^{B} y_{i(b)} = \frac{1}{B} \sum_{i=1}^{N} \sum_{r'=1}^{r} y_{i,r'} = \frac{1}{B} \sum_{i=1}^{N} \sum_{r'=1}^{r} y_{i} = \frac{r}{B} \sum_{i=1}^{N} y_{i} = \frac{1}{N} \sum_{i=1}^{N} y_{i}$$

• When a PRF is starting to fit pure noise, its out-of-sample prediction collapses to \bar{y} , which is *optimal*.

B & P as an Approximation to Population Sampling

- Intuitively, at *s**, the test set behavior is identical to that of doing (random) subsampling with subsamples containing one observation.
- Averaging the results of the latter (over a large *B*) is just a complicated way to compute an *average* equivalent to stopping at *s**.

Let's recapitulate

- For the prediction function to be close to optimal without tuning it, we needed stuff past s* to efficiently averages out to 0 in the hold-out sample.
- We also needed the estimated function before s^* to be protected against what comes next. We have both.
 - \Rightarrow Immediate implication: there is no need to find s^* through cross-validation to obtain optimal predictions.
- Simulations will ask "How close to population sampling are we when fitting B & P trees?" and the answer will be "surprisingly close".

Not your Average Model Averaging

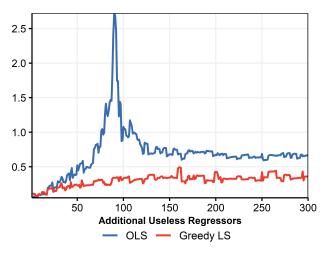


Figure: Model averaging/bagging different linear base learners with increasingly many useless features. Units are $\ln{(\text{MSE}_{model}/\text{MSE}_{Oracle})}$. Oracle has 10 regressors, SNR=2, and N=100.

RF behaves very differently from Deep Learning

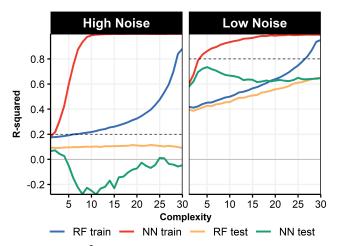


Figure: Dashed lines are true R^2 . DGP is Friedman 1 (Friedman, 1991). The *x*-axis is an index of complexity/depth. For RF, it is a decreasing minimal size node from 200 to 1 in 30 steps, and for NN, an increasing number of layers from 1 to 30. The NN is 50 neurons wide and RF's mtry = 1/3.

New Kids on the Block: *Booging* and *MARSquake*

- The key ingredients for an ensemble to completely overfit in-sample while maintaining a stellar generalization error are
 - the base learner prediction function is obtained by greedy/recursive optimization and
 - (ii) enough randomization in the fitting process.
- (i) means B & P variants of Boosted Trees and MARS are eligible for self-pruning.
- (ii) means its success depends on the capacity of the algorithm for randomization
- Tree constructions are completely irrevocable, additive structure are partly revocable (making (i) and (ii) maybe not as applicable as for RF)
- Let the data decide.

Simulations — Results

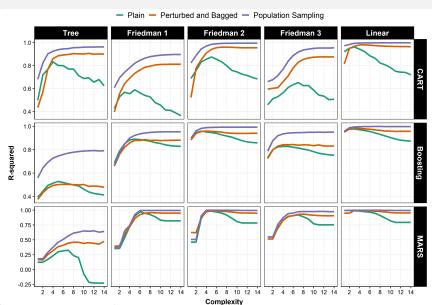


Figure: This plots hold-out sample R^2 's between the prediction and the true conditional mean. The level of noise is calibrated so the signal-to-noise ratio is 4. Column facets are DGPs and row facets are base learners. The x-axis is an index of depth. For CART, it is a decreasing minimal size node $\in 1.4^{\{16,...,2\}}$, for Boosting, an increasing number of steps $\in 1.5^{\{4,...,18\}}$ and for MARS, it is an increasing number of included terms $\in 1.4^{\{2,...,16\}}$.

Real Data Results (1)

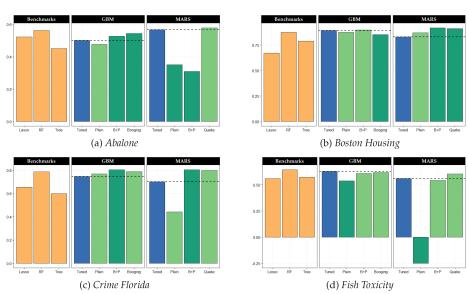


Figure: Performance metric is R_{test}^2 . Darker green bars means the performance differential between the tuned version and the three others is significant at the 5% level.

Real Data Results (2)

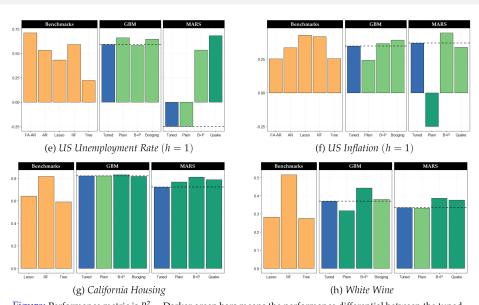


Figure: Performance metric is R_{test}^2 . Darker green bars means the performance differential between the tuned version and the three others is significant at the 5% level.

Conclusion

- 2. This gives rise to the R_{test}^2 vs R_{train}^2 puzzle, which traditional explanations do not account for
- 3. More generally, there is no need to tune the stopping point of a properly randomized ensemble of greedily optimized base learners.
- 4. Boosting and MARS are also eligible for automatic (implicit) tuning.

Not discussed, but of interest:

- Why pruning CART \neq RF: because RF "simulates" the true \mathcal{T} through Bagging (intuition bases on nonlinear time series forecasting)
- Stabilizing the greedy algorithm can also be done with slow-learning (the traditional boosting way) and is developed in (Goulet Coulombe, 2021) where a single "Slow-Growing" Tree can match RF.

Appendix

Simulation Results with more noise

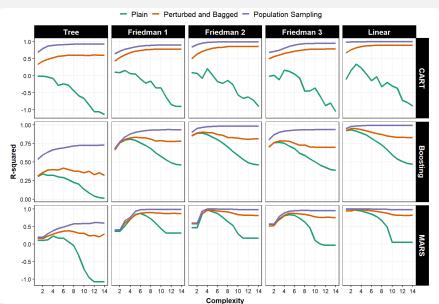


Figure: This plots hold-out sample R^2 's between the prediction and the true conditional mean. The level of noise is calibrated so the signal-to-noise ratio is 1. Column facets are DGPs and row facets are base learners. The x-axis is an index of depth. For CART, it is a decreasing minimal size node $\in 1.4^{\{16,...,2\}}$, for Boosting, an increasing number of steps $\in 1.5^{\{4,...,18\}}$ and for MARS, it is an increasing number of included terms $\in 1.4^{\{2,...,16\}}$.

Why is RF typically much better than pruned CART?

Some insights from nonlinear time series forecasting

- It's been known for a while that RF (or bagged trees) performs orders of magnitude better than a single pruned true (Breiman, 1996).
- RF "pruning via inner randomization" is applied on the true *latent* tree T which itself can only be constructed from randomization the greedy fitting procedure itself that generates the need for Bagging.
- The inspiration for the following argument comes from forecasting with nonlinear time series models. An illustrative SETAR DGP is

$$y_{t+1} = \eta_t \phi_1 y_t + (1 - \eta_t) \phi_2 y_t + \epsilon_t, \quad \eta_t = I(y_t > 0)$$
 (3)

- Forecasts are obtained y_{t+h} by iterating forward starting from t.
- From h > 1 on, only an estimate $\hat{y}_{t+1} = E(y_{t+1}|y_t)$ is available. By construction, $E(\hat{y}_{t+1}) = y_{t+1}$. However, by properties of expectations, $E(f(\hat{y}_{t+1})) \neq f(y_{t+1})$ if f is non-linear.
- Iterating forward using \hat{y}_{t+h} 's as substitutes for y_{t+h} leads to bias.

Why is RF typically much better than pruned CART? Back to the tree algo

- To get the next finer subset that includes i, the "cutting" operator is applied to the latest available subset $S' = \mathcal{C}(S; y, X, i)$.
- The prediction for i can be obtained by using C recursively starting from S_0 (the full data set) and taking the mean in the final S.
- As such, the true latent tree is $\mathcal{T}(X_i) = E\left(y_{i'}|i' \in \mathcal{C}^D(S_0;y,X,i)\right)$ where D is the number of times the cutting operator must be applied to obtain the final subset in which i resides.
- But using \hat{y}_{t+1} in situ of y_{t+1} in SETAR and \hat{S} in situ of S in a tree generate problems of the same nature.
- The direct CART procedure produces an unreliable estimate of \mathcal{T} because it takes as given at each step something that is not given, but estimated. Since \mathcal{C} is a non-linear operator, this implies that the mean itself is not exempted from bias.
- Like in the case of forecasting SETARs, simulating the expectation numerically via bootstrapping circumvents the problem. In the context of a tree, this has a different name: Bagging.

Slow-Growing Trees

Filling the Missing Corner

Table: A Tree Ensemble Quaternity

Model Structure

Regularizer

		Additive Shallow Trees	One Deep Tree
•	Slow Learning	Boosting	Slow-Growing Tree
	В&Р	Booging	Random Forest

Implementation

Consider the deceptively simple tree below, which is obtained after one recursion of CART.

Full Sample
$$A \equiv \{i | x_i < 0\} \quad B \equiv \{i | x_i \ge 0\}$$

The subsequent problem of finding k_A^* and c_A^* to further grow the tree on the A side is

$$\min_{k \in \mathcal{K}, c \in \mathbb{R}} \left[\min_{\mu_1} \sum_{\{i \mid X_i^k \le c\}} \omega_i^A (y_i - \mu_1)^2 + \min_{\mu_2} \sum_{\{i \mid X_i^k > c\}} \omega_i^A (y_i - \mu_2)^2 \right]$$
(4)

where $\omega_i = I(i \in A)$. This can be generalized to

$$\omega_i = I(i \in A) + (1 - \eta)I(i \in B)$$

where $\eta \in (0,1]$ is a learning rate. ω_i 's collapse to CART when $\eta = 1$.

SGT Algorithm

Algorithm 1 Slow-Growing Tree

Input: Training data $[y_i \ X_i]$, test set predictors X_j , learning rate $\eta \in (0, 1]$, maximal Gini coefficient G. Initialize $\omega_i^0 = 1 \ \forall i$.

for *l*'s such that $G_l < \bar{G}$ do

$$(k_l^*, c_l^*) = \underset{k \in \mathcal{K}, c \in \mathbb{R}}{\min} \left[\min_{\mu_1} \sum_{\{i | X_i^k \le c\}} \omega_i^l (y_i - \mu_1)^2 + \min_{\mu_2} \sum_{\{i | X_i^k > c\}} \omega_i^l (y_i - \mu_2)^2 \right]$$

Create 2 children nodes with $\omega_i^{l,+} = \omega_i^l (1 - \eta I(X_i^{k_l^*} \le c_l^*))$ and $\omega_i^{l,-} = \omega_i^l (1 - \eta I(X_i^{k_l^*} > c_l^*))$.

end for

Return:
$$\hat{y}_j = \sum_{l=1}^L \left(w_j^l(\mathbf{X}_j) \sum_{i=1}^N \omega_i^l y_i \right)$$
 where $w_j^l(\mathbf{X}_j) = \frac{\omega_j^l(\mathbf{X}_j)}{\sum_{l=1}^L \omega_j^l(\mathbf{X}_j)}$

Simulations

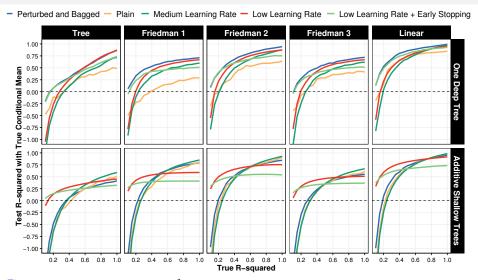


Figure: This plots the hold-out sample R^2 between the prediction and the true conditional mean. The level of noise is decreasing along the x-axis. Column facets are DGPs and row facets are "models". The y-axis is cut at -1 to favor readability because a few models go largely below it for the lowest true R^2 case.