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The UPenn-UQAM Forecasts

Day-by-Day Forecasts of September 2022 Sea Ice Extent
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They are updated weekly during summertime on la Chaire’s website.
https://chairemacro.esg.ugam.ca/arctic-sea-ice-forecasting/?lang=en
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An Ensemble of Papers

I. Arctic sea ice projections from statistical and climate models disagree
“Probability Assessments of an Ice-Free Arctic: Comparing Statistical and Climate Model

Projections," Diebold and Rudebusch. J. Econometrics, 2022, in press.

II. The VARCTIC: enlarging the information set (8 and 20 variables), a
hybrid statistical-dynamical model approach.
“Climate Models Underestimate the Sensitivity of Arctic Sea Ice to Carbon Emissions,"
Goulet Coulombe and Gobel, Journal of Climate, 2021 .

III. Focusing on sparse carbon trends, key ice indicators and forcing
forecasts self-consistency through basic physical constraints
“When Will Arctic Sea Ice Disappear? Projections of Area, Extent, Thickness, and Volume,"
Diebold, Rudebusch, Goulet Coulombe, Gobel and Zhang. arxiv:2203.04040, 2022.

IV. Machine Learning-based nonlinearities can help for short-run forecasts
but overall plain linear models are very stubborn benchmarks. Also,
there are seasonal thresholds of predictability.

“Assessing and Comparing Fixed-Target Forecasts of Arctic Sea Ice: Glide Charts for
Feature-Engineered Linear Regression and Machine Learning Mode," Diebold, Gobel ,
Goulet Coulombe, arxiv:2206.10721, 2022.
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Model I - The VARCTIC

® Bayesian Vector Autoregression (VAR), a workhorse macroeconometric
model

® compromise between fully structural and purely statistical approaches
® models a dynamic system diverging towards a physical constraint of 0 SIE

® gssess the importance of different variables in amplifying various forcings
—i.e., feedback loops
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Some methodological choices

® Representation of external forcings and internal variability in
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Data Source

Sea Ice Extent

CO,

Total Cloud Cover

Sea Surface Temperature
Air Temperature
Precipitation

Thickness

Sea Ice Albedo

NSIDC Sea Ice Index

NOAA/ESRL Global Trend
NCEP/NCAR 40-year Reanalysis Project
Met Office Hadley Centre

NCEP/NCAR 40-year Reanalysis Project
NOAA/OAR/ESRL

PIOMAS

MERRA-2

e We also consider a version with 20 variables.
® Could be augmented with economic indicators.
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Forecast obtained by iterating the system forward

Figure: Trend Sea Ice Extent, adjusted for September level
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Response of Sea Ice Extent to different impulses
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Model II and III - FELR and FEML

FELR (Feature-Engineered Linear Regression) is a simple model using
features constructed from daily data

SIEponth — ¢, Time, SIEL gsiMonths SIELasBODaysr SIEToduy ®3)

® FEML (Feature-Engineered Machine Learning) is the extension using
Macro Random Forest of Goulet Coulombe (2020).
yr = XiBt + €t
pr = F(St)
® Macro RF is particularly well suited for modeling short time series (a

statistical problem shared both by macroeconomists and climate
scientists). There are packages in both Python and R.

® Both are easily implementable and provide good forecasts of aggregate
sea ice, all year long and at any horizon
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RMSE Glide Chart for September
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® Those models, re-estimated recursively to avoid look-ahead bias,

outperform the SIO median for days for which the latter is available.

® Pocket FEML distinguishes itself from the pack when forecasting
September’s SIE in mid-July.
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Looking at forecasts themselves

Figure 5: Annual Out-Of-Sample Forecasts on Different Days
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(b) Forecast-Day: July 25 (¢) Forecast-Day: August 13
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Parting Words
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Figure 2 — Historique des prévisions et leurs intervalles de confiance pour septembre 2022. ['axe des x correspond & la date a laquelle la
prévision fut calculée. Le glisseur (slider) permet de zoomer sur certaines périodes historiques. Lutilisateur peut décider de I'inclusion ou

I'exclusion de certains modéles en cliquant sur ceux-ci dans la Iégende.

See https://chairemacro.esg.ugam.ca/arctic-sea-ice-forecasting/?lang=en
to visualize forecasts and their history through an interactive interface.
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